Menofiya University		
Faculty of Engineering		1 year (Mechanical Power) Applied Mechanics
Tim Allowed: 3 hour		Code: PRE 118
First Semester Examination, 2017-2018		Total mark: 75 marks
Date of Exam: 3/1/2018		Production Eng. Dep.

Answer all the following questions

PART (I) STATICS

QUESTION NO. 1

(13 MARI)
A) Determine the magnitudes of the forces C and T graphically and analytically, which, along with the other three forces shown in Figure 1, act on the bridge-truss joint. (8 Marks)

Fig. 1
B) The 120-N force is applied as shown in Figure 2 to one end of the curved wrench. If $\alpha=30^{\circ}$, calculate the moment of F about the center O of the bolt. Determine the value of α which would maximize the moment about O; state the value of this maximum moment. (5 Marks)

Fig. 2
QUESTION NO. 2
(22 MARE)
A) Calculate the value and construct a bending moment and shear force diagram for following beam shown in Figure.3. (9 Marks)

Fig. 3

B) Determine only the reaction forces at point B and point C of the compound beam as shown in Figure. 4. (5 Marks)

Fig. 4
C) Determine the moments of inertia and the radius of gyration of the shaded area as shown in Figure. 6 with respect to the x and y axes. (8 Marks)

Fig. 5
$* * * * * * * *$ GOOD LUCK**********

This exam measures the following ILO							
Question number	Q1(a)	Q1(b)	Q1(b)	Q2(a)	Q2(b)	Q2(c)	
skills	A1	A3	B2	B4	C1	C3	
	Knowledge \& Understanding	Intellectual	Professional				

Dr. Mahmoud Samir El-wazery

Part 2: Dynamics

(40 marks) $\quad 10 / 1 / 2018$
Question 3
(7+8 marks)

a) The right-angle bar shown in Fig. (3-a) rotates clockwise with an angular velocity which is decreasing at the rate of $4 \mathrm{rad} / \mathrm{s}^{2}$. Write the vector expressions for the velocity and acceleration of point A when $\omega=2 \mathrm{rad} / \mathrm{s}$.

Fig. 3-a

Fig. 3-b
b) The crank and connecting rod of a steam engine are 0.3 m and 0.6 m respectively. The crank OA rotates with a constant angular velocity of $12 \mathrm{rad} / \mathrm{s}$. Find graphically, or otherwise, the velocity of A, the angular velocity of the link $A B$ and the piston acceleration for the position shown in Fig. 3-b.

Question $4 \quad$ (7+8 marks)

a) The ram of a pile driver shown in Fig. (4-a) has a mass of 750 kg and is released from rest 2 m above the top of the $2000-\mathrm{kg}$ pile. If the ram rebounds to a height of 0.1 m after impact with the pile, calculate (a) the velocity v_{p} of the pile immediately after impact, (b) the coefficient of restitution e, and (c) the percentage loss of energy due to the impact.

Fig. 4-a

Fig. 4-b
b) The concrete block weighing 3 kN is elevated by the hoisting mechanism shown in Fig. (4-b), where the cables are securely wrapped around the respective drums. The drums, which are fastened together and turn as a single unit about their mass center at O, have a combined weight of 1.5 kN and a radius of gyration about O of 0.5 m . If a constant tension $P=1.8 \mathrm{kN}$ is maintained by the power unit at A, determine the vertical acceleration of the block and the resultant force on the bearing at O.
Question 5

$$
(2+2+6 \text { marks })
$$

a) Write down the differential equation describing undamped free vibration, its general solution and the definitions of "amplitude", "period", and "frequency".

- Demonstrate the basic elements of a vibrating system and define the natural frequency.
b) The bent rod shown in Fig. 5 has a negligible mass and supports a $5-\mathrm{kg}$ collar at its end. If the rod is in the equilibrium position shown, determine the natural period of vibration for the system.

Fig. 5

Dr. Badr M. Abdelbary

Good Luck

